Electrochemical Generation of a Nonheme Oxoiron(IV) Complex

Michael J. Collins,†.‡ Kallol Ray,† and Lawrence Que, Jr.*,†

Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, *207 Pleasant Street SE, Minneapolis, Minnesota 55455, and Chemistry Department, Viterbo Uni*V*ersity, La Crosse, Wisconsin 54601*

Received July 7, 2006

The complex $[Fe^{IV}O(N4Py)]^{2+}$ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) has been prepared by bulk electrolysis in aqueous $CH₃CN$ and $CH₂Cl₂$, and its redox properties characterized. Bulk chronocoulometry and spectropotentiometry experiments in CH₃CN show that $[Fe^{II}(N4Py)(NCCH₃)]^{2+}$ can be oxidized quantitatively to its iron(III) derivative at an applied potential of +0.71 V vs ferrocene and then to the oxoiron(IV) complex (in the presence of added water) at potentials above $+1.3$ V. The $E_{1/2}$ value for the Fe^{IV/III} couple has been estimated to be $+0.90$ V from spectropotentiometric titrations in CH₃CN and cyclic voltammetric measurements in $CH₂Cl₂$.

In the past few years, a number of mononuclear complexes with oxoiron(IV) units supported by polydentate nonheme ligands have been characterized.¹ These complexes serve as models for high-valent intermediates in the catalytic cycles of nonheme iron enzymes that carry out a range of oxidative transformations.2 One such intermediate has been identified as the oxidant in taurine: α -ketoglutarate dioxygenase.³ Several of the biomimetic nonheme iron-oxo complexes have been isolated and structurally characterized by X-ray crystallography,4a,b and by Fe K-edge X-ray absorption spectroscopy,^{4c} thereby providing a structural basis for the interpretation of their spectroscopic properties. These oxoiron(IV) complexes have been shown to carry out a number of substrate oxidations,4a,5 including the hydroxylation of

* To whom correspondence should be addressed. E-mail: que@ chem.umn.edu.

- ‡ Viterbo University.
- (1) Shan, X.; Que, L., Jr. *J. Inorg. Biochem.* **²⁰⁰⁶**, *¹⁰⁰*, 421-433.
- (2) (a) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. *Chem. Re*V*.* **²⁰⁰⁴**, *¹⁰⁴*, 939-986. (b) Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N. *Chem. Rev.* **2005**, *105*, 2227–2252.
(3) (a) Bollinger, J. M., Jr.; Price, J. C.; Hoffart, L. M.; Barr, E. W.; Krebs,
- C. *Eur. J. Inorg. Chem.* **²⁰⁰⁵**, 4245-4254. (b) Krebs, C.; Price, J. C.; Baldwin, J.; Saleh, L.; Green, M. T.; Bollinger, J. M., Jr. *Inorg. Chem*. **²⁰⁰⁵**, *⁴⁴*, 742-757. (4) (a) Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.; Bukowski,
- M. R.; Stubna, A.; Mu¨nck, E.; Nam, W.; Que, L., Jr. *Science* **2003**, *²⁹⁹*, 1037-1039. (b) Klinker, E. J.; Kaizer, J.; Brennessel, W, W.; Woodrum, N. L.; Cramer, C. J.; Que, L., Jr. *Angew. Chem., Int. Ed.* **²⁰⁰⁵**, *⁴⁴*, 3690-3694. (c) Rohde, J.-U.; Torelli, S.; Shan, X.; Lim, M. H.; Klinker, E. J.; Kaizer, J.; Chen, K.; Nam, W.; Que, L., Jr. *J. Am. Chem. Soc*, **²⁰⁰⁴**, *¹²⁶*, 16750-16761.

10.1021/ic061263i CCC: \$33.50 © 2006 American Chemical Society **Inorganic Chemistry,** Vol. 45, No. 20, 2006 **8009** Published on Web 09/06/2006

cyclohexane by $[Fe^{IV}O(N4Py)]^{2+}$ (3)^{5a} $[N4Py = N,N-bis(2$ pyridylmethyl)-*N*-bis(2-pyridyl)methylamine)], suggesting that these complexes can be powerful oxidants.⁶ To date, no detailed electrochemical study has been reported on any of the above nonheme oxoiron(IV) complexes that provides a rationale for their oxidative reactivity.7 Our initial investigations have focused on the electrochemistry of [Fe^{II}- $(N4Py)(NCMe)[(OTT)_2 (1a(OTT)_2)^{4c}$ and its oxoiron(IV) derivative **3** because of the latter's significant thermal stability. In this paper, we report the electrochemical generation of 3 from $1a$ and the determination of its $Fe^{IV/III}$ potential.

The redox chemistry of Fe(N4Py) can be thought of as a series of one-electron reactions traversing from the iron(II) starting point **1a** via iron(III) species **2a** and **2b** to **3** (Scheme 1). As reported previously 8 and shown in Figure 1a, cyclic voltammetry (CV) experiments with a glassy carbon microelectrode show that **1a** undergoes a quasi-reversible oneelectron oxidation in CH₃CN solvent at $+0.61$ V associated with the **2a**/**1a** couple (all potentials reported relative to the

- (7) Sastri, C. V.; Oh, K.; Lee, Y. J.; Seo, M. S.; Shin, W.; Nam, W. *Angew. Chem. Int. Ed.* **²⁰⁰⁶**, *⁴⁵*, 3992-3995.
- (8) (a) Roelfes, G.; Lubben, M.; Chen, K.; Ho, R. Y. N.; Meetsma, A.; Genseberger, S.; Hermant, R. M.; Hage, R.; Mandal, S. K.; Young, V. G., Jr.; Zang, Y.; Kooijman, H.; Spek, A. L.; Que, L., Jr.; Feringa, B. L. *Inorg. Chem.* **¹⁹⁹⁹**, *³⁸*, 1929-1936. (b) Roelfes, G.; Vrajmasu, V.; Chen, K.; Ho, R. Y. N.; Rohde, J.-U.; Zondervan, U.; la Crois, R. M.; Schudde, E. P.; Lutz, M.; Spek, A. L.; Hage, R.; Feringa, B. L.; Mu¨nck, E.; Que, L., Jr. *Inorg. Chem.* **²⁰⁰³**, *⁴²*, 2639-2653.

[†] University of Minnesota.

^{(5) (}a) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.; Stubna, A.; Kim, J.; Münck, E.; Nam, W.; Que, L., Jr. *J. Am. Chem.* Soc. 2004, 126, 472–473. (b) Lim, M. H.; Rohde, J.-U.; Stubna, A.; *Soc.* **²⁰⁰⁴**, *¹²⁶*, 472-473. (b) Lim, M. H.; Rohde, J.-U.; Stubna, A.; Bukowski, M. R.; Costas, M.; Ho, R. Y. N.; Mu¨nck, E.; Nam, W.; Que, L., Jr. *Proc. Natl. Acad. Sci. U.S.A.*, **²⁰⁰³**, *¹⁰⁰*, 3665-3670. (c) Oh, N. Y.; Suh, Y.; Park, M. J.; Seo, M. S.; Kim, J.; Nam, W. *Angew. Chem., Int. Ed.* **²⁰⁰⁵**, *⁴⁴*, 4235-4239. (d) Paine, T. K.; Costas, M.; Kaizer, J.; Que, L., Jr. *J. Biol. Inorg. Chem.* **²⁰⁰⁶**, *¹¹*, 272-276.

^{(6) (}a) Kumar, D.; Hirao, H.; Que, L., Jr.; Shaik, S. *J. Am. Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 8026-8027. (b) Hirao, H.; Kumar, D.; Que, L., Jr.; Shaik, S. *J. Am. Chem. Soc*. **²⁰⁰⁶**, *¹²⁸*, 8590-8606.

Figure 1. Cyclic voltammetry of $1a$ in (a) CH₃CN and (b) CH₂Cl₂ at 25 °C (0.1 M NBu4BF4 supporting electrolyte, glassy carbon working and platinum auxiliary electrodes; scan rate of 0.2 V s^{-1}). Potentials are vs the $Fc^{+/0}$ couple, and the arrow indicates the direction of scans.

ferrocinium/ferrocene couple, $Fc^{+/0}$). Scanning anodically up to $+1.6$ V does not elicit another feature corresponding to a further oxidation to form **3**. Since formation of **3** may be prevented by the lack of an oxygen-atom source, additional CV experiments were carried out in the presence of added water (Figures S1 and S2). Indeed addition of water elicits the appearance of a new reduction wave at $E_{p,c}$ = +0.15 V that intensifies with increased water concentration at the expense of the wave at $+0.61$ V. This feature is assigned to the Fe^{III/II} couple of $[Fe^{II}(N4Py)(OH₂)]^{2+}$ (1b) and becomes more evident in the return scan after **1a** undergoes oxidation, suggesting the more facile displacement of CH3CN from **1a** by water upon oxidation to **2a**. Even under these 'wet' conditions, CV experiments at higher potential did not elicit a feature that can be assigned to the formation of **3**, suggesting that either the incorrect potential range was being monitored or that there is a kinetic barrier to the oxidation.

As an alternative strategy, controlled potential bulk electrolysis experiments using a large-surface-area reticulated vitreous carbon electrode (see Supporting Information for details) were carried out on **1a** in CH₃CN. Application of a potential of +0.71 V, sufficient to oxidize >99% of **1a** by one electron, based on the $E_{1/2}$ value of $+0.61$ V, elicited within 20 min the conversion of the amber color characteristic of **1a** to a lemon yellow solution. The initial amber color could be restored upon switching the potential to 0.0 V. The lemon yellow species exhibits a UV shoulder at about 300- 320 nm that is assigned to $[Fe^{III}(N4Py)(OH)]^{2+}$ (2b), which could be independently prepared by the addition of 0.5 equiv of H_2O_2 to $1a^{8a}$ These observations support a reaction sequence in which **1a** is first oxidized to **2a**, which is in turn converted to **2b** in a ligand exchange step promoted by the added water.

Electrolysis at $\geq +1.3$ V resulted in the much slower conversion of the lemon yellow solution to a pale blue-green solution (see Supporing Information for details). The UV vis spectrum of the blue-green solution gave an absorbance maximum and a molar absorbance identical to those reported earlier^{5a} for 3 (vide infra). Switching from a high poising potential to 0.0 V resulted in the rapid reduction of **3** back to **1a**.

As a further substantiation of the redox chemistry, spectroelectrochemistry experiments were carried out to monitor

Figure 2. Spectrochronocoulometry of **1a** (2.30 mL of a 0.27 mM solution in CH₃CN containing 0.1 M H₂O and 0.1 M NBu₄BF₄ as supporting electrolyte at 20 °C). (a) Oxidizing jump from -0.20 to $+0.71$ V, followed by a reducing jump to -0.20 V; charges passed were -52 and $+54$ mC, respectively. (b) Reducing jump from $+1.3$ to $+0.71$ V, followed by a jump to -0.20 V; charges passed were -7 and $+118$ mC, respectively.

the spectral changes associated with **1a**, **2b**, and **3** as a function of the applied potential. Controlled potential spectrochronocoulometry from an initial poise of -0.20 V jumped to $+0.71$ V showed a complete loss, over a $15-20$ min period, of the 455- and 380-nm bands associated with **1a**. Currents peaked at about 1 mA and declined to less than 10 μ A over this time period. Subsequent reduction back to **1a** was rapid and quantitative. Chronocoulometry gave within 5% of the expected number of coulombs for a one-electron redox reaction (Figure 2a). Subsequent jumps to $+1.4$ V gave complete conversion to **3** within 30 min, based on the appearance of its characteristic 695-nm absorption band.^{5a} Initial currents again were in the 1 mA range, but the residual oxidizing current was much higher at $+1.4$ V, about 50 μ A, due to competing oxidation of the added water (Figure S2). As a result, chronocoulometry gave about 30% more millicoulombs than would be expected for a one-electron oxidation. In all cases, the return jump from $+1.4$ to $+0.71$ V elicited no reducing current nor spectral changes over 20 min or more. However, a jump from $+0.71$ to -0.20 V initiated immediate spectral changes and large reducing currents (Figure 2b), eventually restoring the initial spectrum of **1a**. These results show that **1a** in CH3CN can be oxidized to **3** in two one-electron steps, but reduction of **3** is a twoelectron process.

The rate of formation of 3 at $+1.3$ V increased with increasing concentration of added water. Electrolysis at higher potentials, up to $+2$ V, also increased the rate of formation of **3**. Thus, the rate of electrolytic formation of **3** is a function of the applied potential, the working electrode surface area relative to cell volume, and the concentration of added H2O. The absence of a **2b**/**3** oxidation wave in the CV experiment can thus be attributed to the small surface area of the microelectrode and the low concentration of **2b** formed at the electrode surface. As will be presented below, a switch from CH_3CN to CH_2Cl_2 allows the 2b/3 oxidation wave to be observed by CV (Figure 1b).

A spectropotentiometric titration was carried out in CH₃CN with $1 \text{ M H}_2\text{O}$ to estimate the midpoint potential of the irreversible formation of **3** from **2.** The conversion of **1** to **2** was essentially complete under these conditions with the application of a +0.71 V potential, and **³** began to form only above this potential. Difference spectra vs the spectrum obtained at +0.71 V were computed and representative spectra are shown in Figure 3. The changes in absorbance

Figure 3. Representative difference spectra relative to the spectrum at 0.71 V in the spectropotentiometric titration of 0.2 mM **2b** to form **3** in CH3CN at 20 °C. The inset shows the plot of ∆*A* vs potential for the respective bands at 695 and 305 nm. $AU =$ absorbance units.

at 305 and 695 nm for all difference spectra are shown in the inset. The solid line in each case is the line computed from a fit to the Nernst equation⁹ (see Supporting Information for further details). The best fit at 695 nm gave $\Delta \epsilon = 0.38$ mM^{-1} cm⁻¹ and a midpoint oxidation potential ($E_{1/2}$) of +0.90 V, while the fit at 305 nm gave $E_{1/2}$ = +0.88 V, with $\Delta \epsilon = -3.25 \text{ mM}^{-1} \text{ cm}^{-1}.$
Analogous experiments

Analogous experiments carried out in $CH₂Cl₂$ corroborate the results obtained in CH3CN and enhance our understanding of the redox chemistry of **3**. Figure 1b (green line) shows the cyclic voltammogram of $1a$ in CH_2Cl_2 with a quasireversible wave for the $1a/2a$ couple at $+0.58$ V, provided that the CV scan does not go beyond $+0.8$ V. The Fe^{III}/Fe^{II} reduction wave assigned to $1b$ is also present in CH_2Cl_2 at +0.15 V and becomes more evident in the return scan after **1a** undergoes oxidation when residual water is present in the solvent. This wave is more intense in CH_2Cl_2 than in $CH₃CN$, indicating a higher concentration of 2b in $CH₂Cl₂$ upon oxidation of **1a**, as expected for a mass action effect on the **2a**/**2b** equilibrium.

An irreversible oxidative wave appears at $+1.4$ V (i_a = 11 μ A) upon scanning above $+0.8$ V in CH₂Cl₂, which is notably absent in $CH₃CN$ (Figure 1); this feature is observed only when trace water is present in the solvent. On the reverse scan, there is a dramatic change in the appearance of the reducing wave near $+0.4$ V, with a near doubling of the reducing current (Figure 1b, black line; $i_c = 20 \mu A$). Spectroelectrochemistry in CH_2Cl_2 at 5 °C shows quantitative conversion of **2b** to **3** between 1.1 and 1.4 V (Figure S3), with a visible spectrum virtually identical to that obtained in CH3CN. Moreover, **3** can be quantitatively reduced back to $2b$, which is not possible in $CH₃CN$. It is thus reasonable to assign the oxidative wave at $+1.4$ V ($E_{p,a}$) to the oxidation of 2b to 3 in CH_2Cl_2 and its reduction to the wave at $+0.4$ $V(E_{p,c})$. The absence of a similar feature in CH₃CN suggests that the rate of electrochemical formation of **3** is much slower in $CH₃CN$ than in $CH₂Cl₂$ and further corroborates the notion

COMMUNICATION

that the substitution of CH3CN in **2a** by hydroxide to form **2b** must occur for **3** to be formed (Scheme 1). The slower ligand exchange in CH3CN makes the formation of **3** kinetically too hindered to be directly observed by CV in $CH₃CN$, in contrast to the results obtained in $CH₂Cl₂$.

The large potential difference ($\Delta E = 1$ V) between the oxidizing and reducing peaks associated with 3 in CH_2Cl_2 is similar to those observed for $[(L)_2Fe^{III}_2(O)(OAc)_2]^{n^+}$ (L $=$ tridentate N3 ligand) complexes,¹⁰ reflecting very slow electron transfer at the working electrode. We speculate that the kinetic barrier to the reduction of the Fe^{IV} species may be due to converting an $S = 1$ Fe^{IV} center to an $S = 5/2$ Fe^{III} center. From the CV data in CH_2Cl_2 , the $E_{1/2}$ value for the **2b/3** couple can be estimated to be $+0.90$ V by using the relation $E_{1/2} = (E_{p,a} + E_{p,c})/2$,¹⁰ in good agreement with the spectropotentiometric results in CH₃CN.

Within the context of the limited database of Fe^{IV}/Fe^{III} couples ranging from 1.2 to -0.3 V vs Fc^{+/0}, the redox potential of **3** falls at the high end of these values, comparable to those measured for $[(L)_2Fe^{III}_2(O)(OAc)_2]^{n+}$ complexes¹⁰ but 0.3-1.1 V higher than for the values found for complexes of dianionic porphyrin, $11b$ trianionic ureaylate, $11c$ and tetraanionic amidate ligands.11c Our value for **3** differs significantly from the $E_{\text{p,c}}$ value of -0.44 V observed by Sastri et al.7 in the cyclic voltammetry of chemically produced **3** in CH3CN. In our view, the latter negative value reflects not the true reduction potential of **3**, but instead the large kinetic barrier associated with its reduction,¹⁰ particularly in the absence of protons needed to form **2b**. The redox potential for **3**, determined in our experiments from spectropotentiometric titrations in wet $CH₃CN$ and cyclic voltammetric experiments in wet CH₂Cl₂, is much more positive ($E_{1/2}$ = +0.9 V vs Fc^{+/0}). In light of Mayer's work,¹² the high potential of **3** provides a strong rationale for its observed ability to oxidize hydrocarbons, including cyclohexane.^{5a}

Acknowledgment. This work was supported by the National Science Foundation (CHE0113894, M.J.C.) and the National Institutes of Health (GM-33162, L.Q.). We are grateful to Mr. Sang-Mok Lee for the synthesis of **1a**.

Supporting Information Available: Experimental procedures, the CV of **1a** in dry and wet CH3CN (Figure S1), the solvent windows for the CV experiments in 'dry' and 'wet' solvents (Figure S2), and the spectroelectrochemistry of $1a$ in CH_2Cl_2 (Figure S3). This material is available free of charge via the Internet at http://pubs.acs.org.

IC061263I

⁽⁹⁾ Arciero, D. M.; Collins, M. J.; Haladjian, J.; Bianco, P.; Hooper, A. B. *Biochemistry* **¹⁹⁹¹**, *³⁰*, 11459-11465.

⁽¹⁰⁾ Slep, L. D.; Mijovilovich, A.; Meyer-Klaucke, W.; Weyhermuller, T.; Bill, E.; Bothe, E.; Neese, F.; Wieghardt, K. *J. Am. Chem. Soc.* **2003**, *¹²⁵*, 15554-15570. (11) (a) Lee, W. A.; Calderwood, T. S.; Bruice, T. C. *Proc. Natl. Acad.*

Sci. U.S.A. **1985**, *82*, 4301-4305. (b) Groves, J. T.; Gross, Z.; Stern, M. K. *Inorg. Chem.* **1994**, 33, 5065-5072. (c) Gupta, R.; Borovik, A. S. *J. Am. Chem. Soc.* 2003, 125, 13234-13242. (d) Ghosh, A.; A. S. *J. Am. Chem. Soc*. **²⁰⁰³**, *¹²⁵*, 13234-13242. (d) Ghosh, A.; Tiago de Oliveira, F.; Yano, T.; Nishioka, T.; Beach, E. S.; Kinoshita, I.; Münck, E.; Ryabov, A. D.; Horwitz, C. P.; Collins, T. J. *J. Am. Chem. Soc.* **2005**, 127, 2505–2513. *Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 2505-2513.

⁽¹²⁾ Mayer, J. M. *Acc. Chem. Res*. **¹⁹⁹⁸**, *³¹*, 441-450.